Black Horse Pike Regional School District Highland Timber Creek Triton Science Department

Syllabus Physics A Course Content

Physics A will provide students with a practical knowledge of the principles of physics that are needed for working and competing in a technical environment. This course will develop the critical thinking skills of students through many discussions and problem-solving sessions. The course will reinforce various principles through laboratory activities. Basic topics for the course are: mechanics, and, waves. Only sections with * and no * will be taught all ** sections will be skipped.

September: Basic Skills (HS-ETS1-2)

- Develop problem-solving, decision-making, and inquiry skills
 - o Rearranging equations
- Plan and conduct experiments
- Collect, analyze and evaluate evidence to build and revise models of natural phenomena
 - o Graph Scientific Data
 - o Convert units

October/November: Kinematics (HS-ETS1-2, HS-ETS1-4)

- Motion in one dimension
- Vectors vs. scalars
- Displacement vs. Distance
- Velocity vs. Speed
- Using the four kinematics equations to solve problems:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$\circ$$
 $v = v^{\circ} + at$

$$\circ \quad v^2 = v_o^2 + 2aDx$$

$$o v_{avg} = (v + v_o)/2$$

• Graphical interpretation of motion

November/December: Dynamics (HS-PS2-1, HS-PS2-2, HS-PS2-3)

- Newton's Laws
- Free body Diagrams
- Gravity near the earth's surface and "g"
- Mass versus weight (W = mg)
- Use ΣF = ma and free body diagrams to solve problems in one dimension
- Surface Forces: Normal Force and Friction
- Apparent weight
- Static and Kinetic Friction

December/January: Uniform circular motion and universal gravitation (HS-PS2-4)

- Net force required for circular motion ($a = mv^2/r$)
- Application of Free Body diagrams and Newton's Laws to circular motion problems
- Universal gravitation
- Solve problems with universal gravitation ($F = GMm/r^2$)
- Satellites and 'weightless"
- Kepler's Laws and Newton's Synthesis

February/March: Energy (HS-PS3-1, HS-PS3-3)

- Work done by a constant force ($W = Fd_{parallel}$)
- Conservation of Energy $(E_0 + W = E_f)$
- Kinetic Energy (KE = $\frac{1}{2}$ mv²)
- Gravitational Potential Energy (GPE = mgh)
- Elastic Potential Energy (EPE = $\frac{1}{2}$ kx²)
- Internal Energy and Joule's Principle
- Conservative and non-conservative forces
- Problem solving with the Principle of Conservation of Energy.

March/April: Momentum (HS-PS2-2, HS-PS2-3)

- Momentum (p = mv)
- Impulse (I = FDt = Dp)
- Momentum and its relation to force (F = Dp/Dt)
- Conservation of momentum (Sp = Sp')
- Collision and Impulse Problems
- Elastic collisions in one dimension $(v_1 v_2 = v_2' v_1')$
- Perfectly inelastic collisions in one dimension ($m' = m_1 + m_2$)
- Inelastic collisions in one dimension

May: Simple Harmonic Motion (<u>HS-PS3-1</u>, <u>HS-PS3-2</u>)

- Period and frequency
- Mass-spring systems
- The simple pendulum
- Wave Motion

June: Waves (HS-PS4-1)

- Wavelength, frequency and wave velocity
- Interference
- Refraction
- Diffraction
- Standing Waves

Labs by Unit:

Kinematics:

Bowling Law Lab Stomp Rockets Free Fall Lab Hopper Lab Marble Launchers

Wooden Loop Lab- Inertia demonstration

Dynamics:

Newton's Law Demo

Friction Lab

Inertia Lab

Hooke's Law Lab

Centripetal Force:

Centripetal force lab: Loop-de- Loop

Energy:

Energy Lab Power Lab Marble Launcher Lab Roller coaster project

Momentum:

Momentum Observation Lab:

Simple Harmonic Motion:

Mass-Spring Lab

Pendulum Lab

Waves

Wave Transmission and Reflection String Vibrator Doppler Effect Demo

Course Expectations & Skills

- Create an organized notebook
- Synthesize an assessment using technology as an educational medium (e.g. students make a power point
- presentation, use excel to interpret lab data graphically, digital video, web design, etc.).
- Develop a creative way to convey physical science information or explain a societal phenomenon to a high
- school audience.

• Use math to analyze, express, and predict and model the effects of energy and forces on the physical world

Textbook

None

Grading Policy

Major Assessments 40% Minor Assessments 10% Labs 30% Homework /Classwork 20%